Fault-tolerant edge-pancyclicity of locally twisted cubes LTQn

Authors

  • Xu, Xirong
  • Zhang, Huifeng
  • Lingqi, Zhao
  • Zhang, Zhe
  • Yang, Yuansheng

Abstract

The n-dimensional locally twisted cube LTQn is a variant of the hypercube, which possesses some properties superior to the hypercube. This paper investigates the fault-tolerant edge-pancyclicity of LTQn, and shows that if LTQn (n ≽ 5) contains at most n - 2 faulty vertices and/or edges then, for any fault-free edge e and any integer ℓ with 7 ≼ ℓ ≼ 2n — fv there is a fault-free cycle of length ℓ containing the edge e, where fv is the number of faulty vertices. The result is optimal in some senses. © 2020 Utilitas Mathematica Publishing Inc.. All rights reserved.

Published

2020-06-09

How to Cite

Xu, Xirong, Zhang, Huifeng, Lingqi, Zhao, Zhang, Zhe, & Yang, Yuansheng. (2020). Fault-tolerant edge-pancyclicity of locally twisted cubes LTQn. Utilitas Mathematica, 115. Retrieved from https://utilitasmathematica.com/index.php/Index/article/view/1496

Citation Check