Generalized maximum degree

Authors

  • Haynes, Teresa W.
  • Markus, Lisa R.

Abstract

For a graph G = (V, E) with order n, we define the the generalized maximum degree Δk(G) as follows: Δk(G) = max{\N (S)\ : S is a set of k vertices} for 1 ≤ k ≤ n. We give bounds on Δk(G) and characterize the trees which achieve one of these lower bounds. We define and study (k, r)-regular graphs, that is, graphs for which every subset of V with cardinality k has degree r. In particular, we show that if G is (2, r)-regular for r ≥ 3 and has sufficiently large or sufficiently small order, then G is the complete graph Kr. Finally, we characterize the regular (2, r)-regular graphs.

Published

2001-05-09

How to Cite

Haynes, Teresa W., & Markus, Lisa R. (2001). Generalized maximum degree. Utilitas Mathematica, 59. Retrieved from https://utilitasmathematica.com/index.php/Index/article/view/232

Issue

Section

Articles

Citation Check

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.